Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Curr Pharm Biotechnol ; 23(15): 1837-1850, 2022.
Article in English | MEDLINE | ID: covidwho-1775534

ABSTRACT

It has been very recently suggested that individuals with chronic gut inflammation are highly susceptible to COVID-19. They constitute the serious cases of COVID-19, in which inflammatory cytokine storm is observed. On the contrary, the healthy gut microbiota is linked with low chronic gut and systemic inflammation. This raises the idea that maintenance of the healthy gut microbiota and prevention of gut microbial dysbiosis in COVID-19 patients might avoid the increased cytokine storm, which in turn might reduce the mortality rate. It has been shown that the modulation of the gut microbiota is an effective strategy to strengthen immunity and might be a possible treatment for individuals with viral infections. Currently, there is no clinical data considering the impact of the modulation of the gut microbiota on the treatment of COVID-19. We hypothesize that targeting the gut microbiota might be a novel therapeutic approach or at least a supportive therapy. In the present review article, we described the interaction between SARS-CoV-2 and gut microbiota dysbiosis through two possible mechanisms, including aberrant immune activation and aberrant mammalian target of rapamycin (mTOR) activation. Further, the disruption of the gastrointestinal reninangiotensin system (GI RAS), dysregulation of the coagulation and fibrinolytic systems, and the activity of human serine proteases in COVID-19 pathogenesis were addressed. We also provided possible strategies to restore all the discussed aspects via gut microbiota modulation.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Dysbiosis , SARS-CoV-2 , Cytokine Release Syndrome , Inflammation , TOR Serine-Threonine Kinases , Serine Proteases
3.
Arthritis Res Ther ; 24(1): 42, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1714661

ABSTRACT

BACKGROUND: Based on clinical and genetic associations, axial spondyloarthritis (axSpA) and inflammatory bowel disease (IBD) are suspected to have a linked pathogenesis. Gut dysbiosis, intrinsic to IBD, has also been observed in axSpA. It is, however, not established to what degree gut dysbiosis is associated with axSpA disease severity. The objective of this study was to compare gut dysbiosis frequency between controls, non-radiographic axial spondyloarthritis (nr-axSpA), and ankylosing spondylitis (AS) patients and investigate whether gut dysbiosis is cross-sectionally associated with axSpA disease activity, physical function, mobility, or pain. METHODS: Gut dysbiosis was assessed by 16SrRNA analysis of feces from 44/88 nr-axSpA/AS patients (ASAS/mNY criteria) without inflammatory bowel disease (IBD) and 46 controls without IBD or rheumatic disease. The GA-map™ Dysbiosis Test was used, grading gut microbiota aberrations on a 1-5 scale, where ≥3 denotes dysbiosis. Proportions with dysbiosis were compared between the groups. Furthermore, standard axSpA measures of disease activity, function, mobility, and pain were compared between patients (nr-axSpA and AS combined) with and without dysbiosis, univariately, and adjusted for relevant confounders (ANCOVA). RESULTS: Gut dysbiosis was more frequent in AS than controls (36% versus 17%, p=0.023), while nr-axSpA (25% dysbiosis) did not differ significantly from either AS or controls. Univariately, most axSpA measures were significantly worse in patients with dysbiosis versus those without: ASDAS-CRP between-group difference 0.6 (95% CI 0.2-0.9); BASDAI 1.6 (0.8-2.4); evaluator's global disease activity assessment (Likert scale 0-4) 0.3 (0.1-0.5), BASFI 1.5 (0.6-2.4), and VAS pain (cm) 1.3 (0.4-2.2). Differences remained significant after adjustment for demographics, lifestyle factors, treatments, gut inflammation (fecal calprotectin ≥50 mg/kg), and gut symptoms, except for VAS pain. BASMI and CRP were not associated with dysbiosis. CONCLUSION: Gut dysbiosis, more frequent in AS patients than controls, is associated with worse axSpA disease activity and physical function, seemingly irrespective of both gut inflammation and treatments. This provides further evidence for an important link between disturbances in gastrointestinal homeostasis and axSpA.


Subject(s)
Axial Spondyloarthritis , Spondylarthritis , Spondylitis, Ankylosing , Dysbiosis , Humans , Leukocyte L1 Antigen Complex , Spondylarthritis/diagnosis , Spondylitis, Ankylosing/diagnosis
4.
Bioessays ; 43(9): e2000211, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293142

ABSTRACT

We propose that hyper-inflammation (HYPi) is a ''runaway'' consequence of acute inflammation (ACUi) that arises more easily (and also abates less easily) in those who host a pre-existing chronic inflammation (CHRi), because (i) most factors involved in generating an ACUi to limit viral proliferation are already present when there is an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the abatement of ACUi (following containment of viral proliferation) are suppressed and desensitized where there is an underlying CHRi, with this causing the ACUi to spiral into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through dietary changes) have an intimate and bidirectional cause-effect relationship with CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral diseases, such as influenza, which are characterized by episodic and unpredictable HYPi.


Subject(s)
COVID-19 , Diet , Gastrointestinal Microbiome , Inflammation/physiopathology , COVID-19/diagnosis , COVID-19/physiopathology , Diet/adverse effects , Humans
5.
Viruses ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1289029

ABSTRACT

In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.


Subject(s)
Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , HIV Infections/virology , Vaccines/immunology , Animals , Anti-HIV Agents/therapeutic use , Clinical Trials as Topic , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Immunosenescence , Inflammation , Latent Infection/immunology , Latent Infection/virology , Mice , Vaccines/administration & dosage
6.
BMJ Open Gastroenterol ; 8(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1066881

ABSTRACT

We present a case of haemorrhagic enterocolitis in a patient with SARS-CoV-2 who recovered from respiratory failure after support with venovenous extracorporeal membrane oxygenation. We describe clinicopathological features consistent with the systemic coinfection/reactivation of cytomegalovirus (CMV) concurrent with COVID-19 infection and the protracted clinical course of resolution of gastrointestinal inflammation after the treatment of CMV infection. Stool PCR, abdominal CT perfusion scan and histological examination of ileal and colonic tissues excluded enterocolitis secondary to other causes of infection (common viral, bacterial and protozoal gastrointestinal pathogens), macrovascularand microvascular ischaemia and classic inflammatory bowel disease, respectively. We propose possible synergistic pathophysiologic mechanisms for enterocolitis complicating severe COVID-19 infection: (1) T lymphocyte depletion and immune response dysregulation, (2) use of immunomodulators in the management of severe COVID-19 infection and (3) high concentration of ACE-2 receptors for COVID-19 virus in the gastrointestinal tract.


Subject(s)
COVID-19/complications , Coinfection/virology , Cytomegalovirus Infections/complications , Enterocolitis/complications , Gastrointestinal Hemorrhage/virology , COVID-19/therapy , Diarrhea/virology , Enterocolitis/virology , Extracorporeal Membrane Oxygenation , Female , Humans , Middle Aged , SARS-CoV-2
7.
Gut ; 70(2): 276-284, 2021 02.
Article in English | MEDLINE | ID: covidwho-656013

ABSTRACT

OBJECTIVE: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in faeces of patients with COVID-19, the activity and infectivity of the virus in the GI tract during disease course is largely unknown. We investigated temporal transcriptional activity of SARS-CoV-2 and its association with longitudinal faecal microbiome alterations in patients with COVID-19. DESIGN: We performed RNA shotgun metagenomics sequencing on serial faecal viral extractions from 15 hospitalised patients with COVID-19. Sequencing coverage of the SARS-CoV-2 genome was quantified. We assessed faecal microbiome composition and microbiome functionality in association with signatures of faecal SARS-CoV-2 infectivity. RESULTS: Seven (46.7%) of 15 patients with COVID-19 had stool positivity for SARS-CoV-2 by viral RNA metagenomic sequencing. Even in the absence of GI manifestations, all seven patients showed strikingly higher coverage (p=0.0261) and density (p=0.0094) of the 3' vs 5' end of SARS-CoV-2 genome in their faecal viral metagenome profile. Faecal viral metagenome of three patients continued to display active viral infection signature (higher 3' vs 5' end coverage) up to 6 days after clearance of SARS-CoV-2 from respiratory samples. Faecal samples with signature of high SARS-CoV-2 infectivity had higher abundances of bacterial species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, Morganella morganii, and higher functional capacity for nucleotide de novo biosynthesis, amino acid biosynthesis and glycolysis, whereas faecal samples with signature of low-to-none SARS-CoV-2 infectivity had higher abundances of short-chain fatty acid producing bacteria, Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium 1_1_57FAA. CONCLUSION: This pilot study provides evidence for active and prolonged 'quiescent' GI infection even in the absence of GI manifestations and after recovery from respiratory infection of SARS-CoV-2. Gut microbiota of patients with active SARS-CoV-2 GI infection was characterised by enrichment of opportunistic pathogens, loss of salutary bacteria and increased functional capacity for nucleotide and amino acid biosynthesis and carbohydrate metabolism.


Subject(s)
COVID-19/complications , COVID-19/microbiology , Feces/microbiology , Feces/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/diagnosis , Female , Gastrointestinal Microbiome , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Pilot Projects , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL